Exp-type Ulam-Hyers stability of fractional differential equations with positive constant coefficient

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation

In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.

متن کامل

Ulam-Hyers-Rassias stability for fuzzy fractional integral equations

In this paper, we study the fuzzy Ulam-Hyers-Rassias stability for two kinds of fuzzy fractional integral equations by employing the fixed point technique.

متن کامل

Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay

In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.

متن کامل

Hyers–ulam Stability of Linear Differential Equations with Vanishing Coefficients

We establish the Hyers-Ulam stability of certain first-order linear differential equations where the coefficients are allowed to vanish. We then extend these results to higher-order linear differential equations with vanishing coefficients that can be written with these first-order factors. AMS (MOS) Subject Classification. 34A30, 34A05, 34D20.

متن کامل

Hyers-Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient

This paper is concerned with the Hyers–Ulam stability of the first-order linear differential equation x′ − ax = 0, where a is a non-zero real number. The main purpose is to find an explicit solution x(t) of x′−ax = 0 satisfying |φ(t)−x(t)| ≤ ε/|a| for all t ∈ R under the assumption that a differentiable function φ(t) satisfies |φ′(t)− aφ(t)| ≤ ε for all t ∈ R. In addition, the precise behavior ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2015

ISSN: 1687-1847

DOI: 10.1186/s13662-015-0578-4